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Why one-loop Feynman integrals in D = 4 4 2n — 2¢ dimensions?

Basics

The seminal papers on 1-loop Feynman integrals:

't Hooft, Veltman, 1978 [2]: “Scalar oneloop integrals”

Passarino, Veltman, 1978 [3]: “One Loop Corrections for e™ e~ Annihilation into "y~
in the Weinberg Model”

Interest in 1-loop integrals from basically two sides

1.
For many-particle calculations, there appear inverse Gram determinants from tensor
reductions in the answers.

These 1/G(p;) may diverge, because Gram dets can exactly vanish: G(p;) = 0.

One may perform tensor reductions so that no inverse Grams appear, but one
has to buy 1-loop integrals in higher dimensions, D = 4 + 2n — 2¢. See [4, 5].
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Interest in 1-loop integrals from basically two sides

2.
Higher-order loop calculations need h.o. contributions from e-expansions of 1-loops:
1/(d—4)=—-1/(2¢)andT'(¢) =a/e+c+e+---

A Seminal paper was on e-terms of 1-loop functions:
Nierste, Muller, Béhm, 1992 [6]: “Two loop relevant parts of D-dimensional massive
scalar one loop integrals”

Conclusion — 1-loop integrals in D dimensions

A general solution in D dimensions was derived in another 2 seminal papers:
Tarasov, 2000 [7],

Fleischer, Jegerlehner, Tarasov, 2003 [8]: “A New hypergeometric representation of
one loop scalar integrals in d dimensions”

| was wondering if the results of Fleischer/Jegerlehner/Tarasov (2003) are useful for
deriving numerical black-box software applications?
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So we decided to study the issue from scratch in 2 steps:

1st step, done: Re-derive analytical expressions for
scalar one-loop integrals as meromorphic functions of arbitrary space-time
dimension D and for arbitrary kinematics.

e 2-point functions: Gauss hypergeometric functions > F; [9]

e 3-point functions: additional Kamp’e de F’eriet functions F; there are the Appell
functions Fi, ... F4 [10]

e 4-point functions: additional Lauricella-Saran functions Fs [11]

2nd step, future: Derive
the Laurent expansions around the singular points of these functions at D = 4,6, - - -.

This talk:
¢ Analytical expressions for self-energies, vertices, boxes
¢ Numerical checks
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l n
Jo = (_1)n1"(n—d/2)/0 Hldx,5< Zx,>’nd/2 (4)
=

Here, the F-function is the second Symanzik polynomial.
The F-function is derived from the propagators (2),
M?> = x\Dy+---+xyDy = kK> —20k+J. (5)

Using 6(1 — >_ x;) under the integral in order to transform linear terms in x into quadratic ones, we
may obtain:

Fu(x) = —(;xi)J-S-QZ = %izsz‘Yiij—ia (6)

The Y;; are elements of the Cayley matrix, introduced for a systematic study of one-loop n-point
Feynman integrals e.g. in [12]

Y=Yy = m+m—(q—q) (7)

There are N, = %n(n + 1) different Y;; for n-point functions: N3 = 6, N, = 10, N5 = 15.
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The operator k™ ...

... will reduce an n-point Feynman integral J, to an (n — 1)-point integral J,,_; by shrinking the
propagator 1/Dy

dk 1 dk 1
kK™ J = k‘/.—i = /—7 (8)
! 2 H]”l:l D; ind/? H_;'I;ﬁk,/:le

Mellin-Barnes representation

“+ioco
1 1 T(=s)T(A+s) | |: \b; }

— = — [ d—" """ = ,F| 7 —z|.

(1 +2> wi ) C T Ty by TF
Eqn. (9) is valid if |Arg(z)| < .
The integration contour has to be chosen such that the poles of I'(—s) and I'(A + s) are
well-separated. The right hand side of (9) is identified as Gauss’ hypergeometric function. For
more details see [13]).
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Gram and Cayley det’s were introduced by Melrose (1965) [12]. The Cayley determinant A, »
is composed of the

Yy =m? + m_]? — (i — g;)* introduced in (7), and its determinant is:

Yn Yo ... Y
Yio, Yoo ... Yy
Cayley determinant : Ay = A\jp.., = . . (10)
Yin You ©00 Yun
We also define the (n — 1) x (n — 1) dimensional Gram determinant g, = gi2...»,
(q1 — qn)* (@1 —an)(@2 = an) - (g1 — Gn)(dn—1 — qn)
(g1 — 4n) (g2 — Gn) (92 — qn)* oo (2= @n)(gn—1 — an)
GnEGlz.“n*— . 5 . . . (1'
(@1 =) (@n—1—an) (92— ) (@1 —qn) - (gn—1 — qn)?

Both determinants are independent of a common shifting of the momenta g¢;.
Further, the Gram det G, is independent of the propagator masses.
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Co-factors of the Cayley matrix

One further notation will be introduced, namely that of co-factors of the Cayley matrix.
Also called signed minors in e.g. [12, 14]):

Ji J2 S gm
( ki ko ek ) (2]
The signed minors are determinants, labeled by those rows ji, j», - - - j,» @and columns &y, ks, - - - ki

which have been discarded from the definition of the Cayley determinant (),, with a sign
convention.

sign( v m ) = (—pfttattmtkitk e signacure]

ky ke km j1sj2s  + -Jjm] X Signaturelky, ky, - - - K}AB)

Here, signature (defined like the Mathematica command) gives the sign of permutations needed to place the indices in increasing order.

A = ( 0 ) (14)

Cayley matrix, by definition:

Further, it is (see [15]):

1 1 O\,
Lo =LA :(‘.’). (15)
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Rewriting the F-function further, exploring the 6(1 — > x;) ...

The é-function: The elimination of x,, one of the x;, creates linear terms in F(x).

Fu(x) = x"Gux 4 2H, x + K, (16)

The F,(x) may be cast by shifts x — (x — y) into the form

Fux) = (x—=y)"Gux—y)+r—ie = A(x) 410 —ic = A(x)+ Ry,  (17)
M(x) = (=) Gulx =), (18)
and
(o)
= k= HIG = 2 - e (19)
8n On

The inhomogeneity R, = r, —ie carries the is-prescription.
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The linear shifts y;

The (n — 1) components y; of the vector y appearing here in F,(x) are:
wi o= —(Gi'K.), i#n (20)

The following relations are also valid:

ory 1 O\ Oidn 2 0 .
o B R N T N Y
Yy amlz &n amlz gn gn ( i >n l n ( )

The auxiliary condition " y; = 1 is fulfilled.

e The notations for the F-function are finally independent of the choice of the
variable which was eliminated by use of the §-function in the integrand of (4).

e The inhomogeneity R, is the only variable carrying the causal ie-prescription,
while e.g. A(x) and the y; are by definition real quantities.
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The recursion relation for J,

One may use the Mellin-Barnes relation (9) in order to decompose the integrand of J,
given in (4) as follows:

—(”—5)
R
[F(x)]nii [A;,(.X)+R,7}'17§ [1+ ,,Ri)r)]nfE
—(n—dy Fico . )
2 1‘\ _ P _d
- /den ' /ds (=) (n d2+s) [A,,(x)] 2
2mi / F(n_f) Rn

for |Arg(A,/R,)| < . The condition always applies. Further, the integration path in the
complex s-plane separates the poles of I'(—s) and I'(n — ¢ + s).
As a result of (22), the Feynman parameter integral of J, becomes homogeneous:

< felg]

_ 1;[' /O.IE?/Lde,- { A;Q(nx)y _ /dsn_. {A;e(nx)]‘. (23)

j=1
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The recursion relation for J,
In order to solve the integral in (23), we consider the differential operator P, [16, 17],

i=1

This eigenvalue relation allows to introduce the operator P, into the integrand of (23):

~ _ 1 "%
_ PaAW) LT [ 0
o= Jasn R0 = XTI e eowg,

i=1 k=1 0

{A;e(nx) } y (25)

After a series of manipulations in order to perform one of the x-integrations — by partial
integration, eating the corresponding differential — one arrives at:
+ico

-1)" [(=s)D(n— ¢ +s5)T(s+1) (i)n,

_
J, = ds R

2mi 2T(s+2)

—ico

n . (i) s
8rn (i) anl
XZ_, {<8m%) / 2 [ R, (26)

i=1

d
2
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We stress again that only the R, carries an ie.
Now it is important to eliminate the term (—1) from the combination (F,,(Ql/Rn— 1)* under
the Mellin-Barnes integral over s, because then we arrive at a sum over the » different

(n — 1)-point functions arising from skipping a propagator from the original integral. In
fact, this may be arranged using the following relation for (—z) = F/R — 1 [18]:

“+ico
R e 27)

- +[Ood I'(—=s)T(a+b—c—s)'(c—a+s)I'(c—b+s)
- / : T(c — a)l(c - b)

(1 _ Z)cfafbﬁ»s’

—ioco

provided that |Arg(—z)| < 2.
We arrive at the following recursion relation:
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The recursion relation for 1-loop n-point functions

“+ico
-1 T(—s) T +9)D(s+1)
2 _ 2 K
Jll(dr {lIi, m; }) - i / ds 2F(d7n+l ) R,
i 2
1
Z ( o ) k™ Ju(d + 255 {qi, m})- (28)
=\ Bmk

The cases G, = 0 and A\, = r, = 0 prevent the use of the Mellin-Barnes transformation.
— Perform reductions to simpler functions a la [8].

1-point function, or tadpole
By = /ddk 1 _ __ra-d/) (29)

ind/2 k2 — m? + ie (m? — ie)1=d/2"

Comments

e |n Tarasov 2003 [8], a recursion was derived where our Mellin-Barnes integral is replaced
by an infinite sum to be solved. Formulae for 2,3,4-point functions are given.

e Any 4-point integral e.g. is a 3-fold integral.
With AMBRE, we get up to 9-fold integrals for e.g. box integrals, instead!

e Euklidean and Minkoswkian integrals converge equally good. see J. Usovitsch's talk at LL2018 [19].
e No Gram=0 problem. See last section and Usovitsch, TR [20].
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The 2-point function

From our recursion relation (28), taken at n = 2 and using the expression (29) with
d — d + 2s for the one-point functions under the integral, one gets the following
representation:

+ioco
eE / s L(—s) T (&L +5) T(s+1)
2mi
1 6r, (1 — 242
2 (my

h(D;qi,mi, qa,m3) =

One may close the integration contour of the MB-integral in (30) to the right, apply
the Cauchy theorem and collect the residua originating from two series of zeros of
arguments of I'-functions ats =mand s =m —d/2 — 1 form € N.

The first series stems from the MB-integration kernel, the other one from the dimensionally
shifted 1-point functions.

And then summing up in terms of Gauss’ hypergeometric functions.
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re-5)r(s-1) o
D(d; O mi, qo,m3) = 2Ry a1
2( Q my, qz m2) (d—2) F<d> R2 ( )
2
r =il d
1.4 _1. 2 R2 r(4
{(mf)glel e /7 d(z)l
20 2 m % =24
- 2T
+ (m? < md)
H B . m2 7712 d—2
The representation (31) is valid for é <1, i < land Re(5=) > 0.
The result is in agreement with Eqn. (53) of of Tarasov et al. (2003) [8].

CALC2018, JINR, Dubna
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According to the master formula (28), we can write the massive 3-point function as a
sum of three terms:

J3 = Jiz+Jm1 + Sz, (32)

using the representation for e.g. Ji23

~+ico

P eE D(—s) D(EFE0(s+1)
iy 1T = - - R
1123(d7{q m }) 2mi _Zo 21—‘(%) 3
1 87‘3 % 2
X 7> omd Jo(d + 2s5q1,mi, g2, m3). (33)
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Here, J>(d + 25541, mlz, q2, mg) is given by (31), taken at d + 2s dimensions. By performing the Mellin-Barnes
integrals, one gets three terms, each consisting of eight series, from taking the residues by closing the integration
contours to the right; one of the three terms is:
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J3 = Jioz + Jaz1 + J312 iS, with R; = Ri23, Ry = Ry, efc. here:
The massive vertex:
Joe = T (2 - 7) Arsdbn
2) o 2\/1—-m/n
ip—2V/T T (53— 1) G215 Ry d/2-2 1,1; R
2 | a + Ry F .
2 T(4-19) > Rs 3/2; R;
+ T (2 o 7) 831‘3 827'2 mif
2) rnon 4/1—m/n
o) 2\d/2—2 d—2 1 d 2 2 _ 1 2 2
+ (ml) F1 .177 o ﬁ7ﬂ 7RZ/2 2F1 1 1 2 ﬁ ﬁ
d—2 2 2'2"R:’ R, : X Ry Ry

For d — 4, both the [...] approach zero.
So the J; is finite in this limit, as it should be for a massive 3-point function.
Tord Ri 1-loop: i in d dil CALC2018, JINR, Dubna
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The 8;);... is defined in (21). The representation (32) is valid for Re(d — 2/2) > 0. The
conditions |m?/R;| < 1, |R;/Ry| < 1 had to be met during the derivation.

The result may be analytically continued in a straightforward way, however, in the
complete complex domain.

The functions »F; and F; of the b-boundary terms are met
by setting d = 4 in the corresponding functions Ji.
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For the 3-point function, we look at the expression Ji2; + J231 + J12.

We should agree with Eqn. (74) to (76) of Tarasov (2003).

Our terms with d-dimensional F; and »F, do agree exactly, but (bi23 + basi + b312) looks
quite different.

Tarasov (2003) [8], Eqns. (73) and (75)

There are kinematic conditions on internal momenta ¢; = (¢; — ¢;)* to be respected;
the bs-term of Tarasov becomes:

2

Blbs) = 0(=Gs) x B(gq) x 6(TF 1)
y r2-d/2) (23/27“/_7(;3 R3d/2—1) (34)
A3
Otherwise:
Ja(bs) = bs = 0. (35)
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P71, [m7] [+100, +200, +300], [10, 20, 30]
Gis —160000

123 -8860000

m?/ri2s -0.180587, —0.361174, —0.541761
m? /2 -0.97561, —1.95122, —2.92683

m? /123 -0.39801, —0.79602, —1.19403

m? [y -0.180723, -0.361446, —0.542169
> J-terms (0.019223879 — 0.007987267 |)
> by-terms 0

J;(TR) (0.019223879 — 0.007987267 |)
by-term (~0.089171509 + 0.069788641 1) +(0.022214414 )/eps
by + S J-terms | (~0.012307377 —0.009301346 I)
J3(OT) - J-terms, bs-term — 0, OK

MB suite

[

[

(-1)*fiesta3

[

-(0.012307 + 0.009301 1)

[ + (8106 + 0.00001 ) pm4

LoopTools/FF, €° [ 0.0192238790286244077-0.00798726725497102795 i [

l
)]
l

Table 1: Numerics for a vertex in space-time dimension d = 4 — 2¢. Causal ¢ = 10~2°. Red input quantities
(external momenta shown here!) suggest that, according to Eqn. (73) in Tarasov (2003) [8], one has to set

b3 = 0.

Although b3 of [8] deviates from our vanishing value, it has to be set to zero, b3 — 0.
The results of both calculations for J; agree for this case.
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w7, 7] [-100, +200, -300], [10, 20, 30]
G 480000
A3 -19300000
miz/i’g 0.248705, 0.497409, 0.746114
m,.z/rlz 0.248447, 0.496894, 0.745342
m? /a3 -0.39801, -0.79602, -1.19403
m,.z/r31 0.104895, 0.20979, 0.314685
> J-terms (-0.012307377 - 0.056679689 1) + (+0.012825498 l)/eps
S bs-terms (+0.047378343 ) ~(+0.012825498 I)/eps
J3(TR) (-0.012307377 - 0.009301346 1)
by-term (+0.047378343 ) ~(+0.012825498 I)/eps
by+>_ J-terms (-0.012307377 - 0.009301346 1)
J3(OT) >~ J-terms, b3-term—0, gets wrong!
[ MB suite [ [ |

(-1)*fiesta3 [

-(0.012307 + 0.009301 1)

[ + (87106 + 0.00001 1) pm4) |

LoopTools/FF, € |

-0.0123073773677820630 - 0.0093013461700863289 i [ ]

Table 2: Numerics for a vertex in space-time dimension d = 4 — 2¢. Causal ¢ = 10~%. Red input
quantities suggest that, according to eq. (73) in Tarasov2003 [8], one has to set b3 = 0. Further, we have
set in the numerics for eq. (75) of Tarasov2003 [8] that Sqrt[-g123 + I*epsil], what looks counter-intuitive for a
“momentum”-like function.

Both results agree if we do not set Tarasov’s b3 — 0.
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Numerics for 3-point functions, table 3

e —100,-200,-300
m? 10,20,30
G —-160000
A2z 15260000
mlz/r|23 0.104849, 0.209699, 0.314548
miz/rlz 0.248447, 0.496894, 0.745342
m,.z/r23 0.133111, 0.266223, 0.399334
m? /3 0.104895, 0.20979, 0.314685
S J-terms (0.0933877 -0 I —(0.0222144 — 0 l)/eps
> b-terms -0.101249 + 0.0222144/eps
J3(TR) (—0.00786155 -0 I)
b; (-0.701249+ 01 +(0.0222144 + 0 I)/eps
by+J-terms (-0.007861546 + 0 1)
J3(OT) bs+J-terms — OK
[ MB suite [ —0.007862014, 5.002549159*10-6, 0 | |

(-1)flesta3 —(0.007862) [ +(6°10-6 + 6°10-6 [ pm10) |
LoopTools/FF, € | —0.00786154613229082290 [ |

Table 3: Numerics for a vertex in space-time dimension d = 4 — 2¢. Causal e = 10~%,
Agreement with Tarasov (2003).
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The 4-point function

According to the master formula (28), we can write the massive 4-point function as a
sum of four terms:

Jo = Jiosa + Jozar + Jza12 + Jaios, (36)

Each of the four terms has the structure
re-9)rE-1n

d ~
Ji = — X ("1234)57z X b1234
r ()
+T'(2-4d/2) x jf234 (37)

The pre-factor is singular: I'(2 — d/2) = 1/e + - -- ford > 4 — 2e.

We agree for J¢,;, etc. with Tarasov (2003) [8].
For the b4-term, the situation is a bit unclear.
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The boundary term by»34 is independent of d:

. 1 b1z Orioa VT
bz = - 2
1234 8m4 m

2
1 Ori 1 Oris
N ) (L
rixza Omy rizs Om} 4812
82)\12 3l>\12

1 1 3
Fy (*;177;7; o ,ri) (38)
\/1 —m ) \/1 — 2/ \/1 7r12/r123 20 72 2 rioag nos
1 Orion 1 Oris
+VT —
(V1234 om? > <7123 6m3>

M m% 23
x m? 8\ iz — m?
"M 12 123 1

2

2 m2 m2
><F< 1,1,1,17222 7‘,27‘)+(1<—>2)}

71234 ml — Fi23 omy — 12

+(2,3,1) + (3, 1,2).

The boundary term b, has not been exactly defined in [8], concerning the kinematica
conditions. We did not perform massive numerical tests.
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An alternative writing of Jy = Jio3a +J2341 +J3410 +J4123 iS, with Ry = Ri234,R3 = Ri23, R0 =
R, etc. here:

The massive box function

d\ 0.
Jizg = F<2**> 4r4{
2 T4

bi2s - =5 R _
[‘z’(‘k?zzzﬂ[ ol By g gz

51 Ry

[
I —
~—~

)

=

—~
&.

IS

=
~—
[

d

2

d

2
F@—)gﬁﬁﬁgjﬂng{Vlhﬁﬂ

1
7 aN 2
r(4-3) 4 n /1 —m /Ry

d—3 2 27 2 "RR
ﬁ T (% — 1) (93"3 82}”2 r3 r
81"(%—%) 3 n r3—m%r2—m%
LT (4-3)2) m? m? m?
2vd/2—21 \3 1 1 1
— “2 Y pd)2 — 3/2,1,1,1,1,d/2,d/2,d/2,d/2, =L, s
[ () Ly /2= 32 L0 1d/2,/2,4/2,4/2, B g )
+Rj/2—2ﬁps(d—>4)} + (m%<—>m§)} (39)

For d — 4,all three [...] approach zero.
So that the massive J4 gets finite then: OK.
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The cases of vanishing Cayley determinant and vanishing Gram
determinant

We refer to two important special cases, where the general derivations cannot be
applied.

In the case of vanishing Cayley determinant, A, = 0, we cannot introduce the inhomogenei
R, = — /G, into the Symanzik polynomial F.. Let us assume that it is G, # 0, so that

r» = 0. A useful alternative representation to (28) is known from the literature see e.g.
Eqgn. (3) in [8]:

_ 1 Oy
L(d) = mkg oK Ju(d —2). (40)

Another special case is a vanishing Gram determinant, G, = 0. Here, again one may
use Eqgn. (3) of [8] and the result is (for A\, # 0):

7261()\ (41)

The representation was, for the special case of the vertex function, also given in Eqn.
(46) of [21].
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Example: A massive 4-point function with vanishing Gram
determinant |

As a very interesting, non-trivial example we study the numerics of a massive 4-point
function with a small or vanishing Gram determinant [20]. The example has been taken
from Appendix C of [5]. The kinematics is:

pi=ps = m=m=m=0,
msy = (911876/10000)?,
p3 = $3=su = 10000, (42)
P = tw=—60000(1+x),
s = (pr+p2)’ = s = te = —40000,
t = (p2+p3)’ =523 = Suwu = 20000.

The resulting Gram determinant is

G4 = *Zle‘u, [Sf“,u + Svuled — S/,LVM(SIIM + tea — [ey.)]- (43)
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Example: A massive 4-point function with vanishing Gram
determinant Il

The Gram determinant vanishes if

— te
ted — led,crir = sul/u(sul/u Svu LH) . (44)

Sp.uu — Svu

Introducing a parameter x, we can describe the vanishing of G4 by the limiting process
x — 0:

ted - (1 + x)ted,crih (45)
G4 _szp,uute,u, (Sp,uu — Svu + teu)- (46)

x = 0 — the Gram determinant vanishes. Further, it is simple to calculate e.g. the
value at x = 1:

Gi(x =1) = —4.8 x 10" GeV°.

Further, if the Gram determinant vanishes exactly, a reduction of J; according to (1) is
possible and allows a simple and very precise calculation.

For small x, the calculations become unstable with usual reductions a la Passarino/Veltmar
[3], due to the occurrence of inverse Gram determinants.
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In the new approach presented here, a calculation of J4 is possible as follows.

First reduce the indices v; of the propagators, if any, to the canonical value v; = 1, and
then apply the MB-formula directly.

This has been done with the C++ package KIRA [27], without generating inverse
powers of Gram determinants.

In fact, the procedure introduces for a J1(d) a basis of functions Js(d +2n), where n > 0
is related to the indices v; > 1. We use here the short notation

2 .2 2 2 2 2 2 2
J4(D7 vi, 2, V3, V4) = 14(D7P1aP2:P37P4757 t7m13m27m33m4)[V17V27 V35V4]' (47)

The numerical solution of of the Mellin-Barnes integral for J4 is numerically stable
also in the Minkowskian case. This contrasts the usual MB-representations derived
with AMBRE. A reason is that the instabilities in the AMBRE-approach origin from T'-

functions from Beta-functions which do not appear here.
And finally we reproduce the box integral, dependent on d and the internal variables {d, i, m}, - - - g4, m3} or,
equivalently, on a set of external variables, e.g. {d, {p?}, {m}},s,1}:
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3 3 —1\* ! 1 Ory
o — _ D 5 =
Ja(d; {p; }, 5,1, {m;’}) o (=) § ikgksks | o 8m,2(4

2 ) ky ko k3 kg =1

1 Origiyk 1 Orgk _
(o ) (o gt )
kakoky  OMMy Tkpky OMM,
+

oo “+ico “+ico m;% 24 mi 23 mi k53
/dZ4 / dz; / dz (71) < ! ) ( 1)
—ico —ico —ico R Rigioty Rty
T(z4 + ‘12;3)
Tz + %)

T(zs+zs + %)
(s +a+ 5

d—1 d+2
T(+n+u+ T)F(—Zz — 33— 24— T)F(—Zz)r(zz +1).

I(—z)0(za + 1) L(—z)T(zs + 1)

The representation (48) can be treated by the Mathematica packages MB and MBnumerics of the MBsuite,
replacing AMBRE by a derivative of MBnumerics [19].
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The table contains our numerical result, which was also studied in [5]. In LoopTools
notations, numbers correspond to the tensor coefficient Dxz».

We have a numerical agreement of more than 10 digits, although we performed here
no expansion in the small parameter x. Such an expansion would improve calculations
considerably.

Our results give an impression on the accuracy of the small Gram expansion in [5],
where an error propagation of the Pade approach was not done: In all cases, [5] had
at least 10 reliable digits.
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Ji(12 = 26,1,5,1,1) = %5, = Dy

X value for 4! x J4(12 —2¢,1,5,1,1)

O (2 05969289730 + 1 555949101 181) 10710 [J. Fleischer, T. Riemann, 2010]

0 (205969289730 -+ 1.555949101187) 107" MBoneLoop + Kira + MBnumerics

107° (2.05969289342 + 1.55594909187:) 107 1y Fieischer, . Riemann, 2010]

1078 (2.05969289363 4 1.55594909187:) 10" meoneLoop + Kira + MBrumerics

107% (2.05965609497 + 1.55585605343) 100 (4 Freischer, T Fiemann, 2010]

107* (205965609489 + 1.555856053437)10™"° meoneLoop + Kira + MBnumerics

Table 4: The Feynman integral J4(12 —2¢, 1,5, 1, 1) as defined in (47) compared to numbers from

[5]. The Iﬁg]ﬂ is the scalar integral where propagator 2 has index v, = 1+ (1+1+1+1) =
5, the others have index 1. The integral corresponds to Dy, in notations of LoopTools [28].
For x = 0, the Gram determinant vanishes. We see an agreement of about 10 to 11 relevant
digits. The deviations of the two calculations seem to stem from a limited accuracy of the Pade
approximations used in [5].
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Summary

37/30

We derived a new recursion relation for 1-loop scalar Feynman integrals:
self-energies, vertices, boxes etc.

The condition v; = 1 seems to be essential for that.

A generalization to multiloops seems to be not straightforward or impossible.

Solving the recursions in terms of special functions reproduces essential
parts of the results of Tarasov et al. from 2003.

Concerning their »;-terms, we see an improvement compared to their paper.
Maybe their result is not controlled in some kinematical situations. Our
conclusions concerning that depend somewhat on an interpretation of their text.

We derived a new series of Mellin-Barnes representations:

1-dim. for self-energies, 2-dim. for vertices, and 3-dim. for box diagrams for
the most general massive kinematics. Compared to dim=3, 5, 9 respectively, in
the “conventional” Mellin-Barnes-approach.

Again, we see no direct generalization to multi-loops.

The special case of vanishing Gram determinant G, = 0 is not covered.
But for small Gram determinants results are stable.
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